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Introduction

The current generation of spiking neural models
exhibits a range of basic cognitive functions and
realistic biological properties [1]. Neurons in the brain
connect to around 10,000 others near-by (illustrated in
the brain above) and communicate by sending 'spikes’
to their neighbours. The timing of these spikes is the
significant factor requiring many tiny, latency-sensitive
messages to be sent within a neural simulator's
interconnection network.

Despite the network's impact on performance,
simulator architectures typically focus attention on
novel neuron-modelling hardware [2,3]. This work
focuses on improving networks and their topologies.
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Figure 2: SpiNNaker Board

Small World Super Computers

Small-world networks, such as social networks, are
large and sparsely connected yet the number of links
separating any pair of people is small, estimated to be
fewer than six [4]. These properties are desirable for
interconnection networks and can be achieved by
adding random connections to conventional super
computer topologies.
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Figure 4: Rewired 40x40 network
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Few additional links are required to yield a large drop in
average path length and thus to reduce latency (figure
4). Unfortunately, these random connections may
require long, and therefore high-latency, cables.
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Practical Network Topologies: A Case Study

The SpiNNaker brain simulator may contain up to
57,600 chips arranged in a "torus" topology (figure 1).
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Figure 1: SpiNNaker's topology shown flat and in 3D

Practical systems must be assembled from many circuit
boards housed in cabinets (figures 2 & 3) using only
physically short wires to minimise latency. A tool was
created to design wiring schemes for networks using
only short cables and only a few repeating patterns.
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Figure 3: A 6.7m wide.1,200 board system in cabinets arranged such that all wires <1m

Practical Small World Super Computers

Limiting cable length for random connections in
systems laid out naively (figure 3) has a negative
impact on path length reduction. However, when laid
out as in figure 3, this effect is reduced.
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Figure 5: Node positioning effects on wire-length
limited wire lengths and 5% additional links
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